Create custom assemblies 24/7: ManifoldBuilder.com
Published

Go Beyond SPC For Molding Process Control

A new real-time statistical analysis system for injection molding reportedly provides a new level of fault detection and process quality.

Share

A new real-time statistical analysis system for injection molding reportedly provides a new level of fault detection and process quality. The system analyzes and displays process data in a way that can help in automatic part-quality monitoring and faster correction when the process drifts. It can decrease time to troubleshoot processing problems, provides automatic rejection of defective parts, measures process consistency, and can be used for preventive maintenance scheduling.

The reason for a new approach is that current statistical process control (SPC) methodologies have significant limitations as a quality assurance approach, says Daniel Hazen, product manager for advanced industrial applications at MKS Instruments, a supplier of data-acquisition and analysis tools. This is because the interactions of the many variables in the injection molding process are not captured and evaluated simultaneously by conventional SPC, said Hazen at the Molding 2009 conference, held in January in New Orleans and sponsored by Executive Conference Management, Plymouth, Mich.

“Conventional SPC looks at one variable at a time, which does not provide enough information to accurately show a reject part,” says Hazen. Evaluating single process variables one at a time, called univariate analysis, does not capture all of the variables and interactions influencing part quality.

Combining multiple single-variable SPC charts into a single chart has been tried, but that makes it difficult to determine when the process moved out of control or to effectively pinpoint the causes. Hazen says, “SPC may show the occurrence of a problem, but it has trouble showing all of the variables responsible.”

 

MULTIVARIATE ANALYSIS

Hazen says injection molders require a system that analyzes multiple process variables simultaneously—called multivariate analysis (MVA). MVA systems have been used in the chemical, pharmaceutical, and semiconductor industries. “MVA not only looks at multiple process variables simultaneously but it can show a relationship between variables. It goes beyond SPC by determining a correlation between variables,” Hazen said. For example, melt viscosity is a complex function of the material type, melt pressure, ram velocity, and melt temperature.

An MVA system takes process signals, such as melt pressure, screw position, barrel temperature, melt temperature, mold closing, filling, pack/hold, and cooling. The variables are compared in real time to a historical model that represents ideal operating conditions. When the various conditions are all concurrently within their respective ranges, then the molder is relatively assured of making good parts. If a process is out of statistical control, MVA can show exactly which variables are out of tolerance and ranks the variables by order of significance to the problem.

MVA can reject parts based on the value of a variable, or on a change in the correlation between a few or multiple variables, says Hazen. “The detection of change in the relationship between variables provides a tremendous improvement over typical univariate SPC methods.”

In one example, a medical device was being produced in a 32-cavity mold that experienced short shots in one cavity. MVA showed that the defects were caused by a decrease in mold temperature, which increased the melt viscosity. MVA found the cause even though no mold sensors were used.

A study conducted at the University of Massachusetts—Lowell showed that an MVA approach detected twice as many real process changes vs. false positives as conventional SPC, and it missed fewer changes. MVA also missed fewer defects.

 

INJECTION MOLDING MVA

MKS Instruments offers its SenseLink QM data-acquisition system with an MVA engine developed for injection molding. SenseLink collects the data and builds a model around an acceptable process window established from a design of experiments (DOE). The most important features, such as mass and dimensions of the part, or short shots and flash, are defined and analyzed to create the best MVA model of the process.

New production data are compared in real time to the alarm limits developed by the model. The MVA system shows which variable or interaction of variables was responsible for an alarm and ranks the variables in order of importance.
The SenseLink QM system has all necessary data-acquisition, MVA processing, and control functions in a self-contained, compact unit that mounts on the injection machine and connects to existing machine and mold sensors. Users view results through SenseLink’s web browser interface.

MVA is performed on all molding variables in real time on each molding cycle. Process variables contributing to poor quality can be identified, so the system can predict flash, short shots, voids, burning, contamination, bubbles, and surface defects. SenseLink provides real-time process control with filling/packing switchover capabilities. It also provides automatic reject containment and production reporting.

Process models can adapt to acceptable process changes resulting from changes in material viscosity or the plant environment. SenseLink can show a slowly shifting or drifting process, using adaptive techniques that allow the model to adjust to acceptable process change while minimizing alarms. Users can reset the model baseline.

The system can detect process drift toward an out-of-tolerance condition. SenseLink QM displays the MVA results along with a ranking of the variables that are main contributors to the alarm condition. The visual display assists rapid troubleshooting since the variable at the top of the list is the most likely culprit. 

Blending Revolution
Guill - World Leader in Extrusion Tooling
mold, mould track, digital tracking, molding
Dover Clear
Vecoplan
Maguire Ultra
NPE2024: The Plastics Show
Create custom Smartflow assemblies on-line, 24/7.
Windmoeller
Plastics Recycling Latam
New Tinius Olsen VectorExtensometer testing
Uway LLC

Related Content

Are Your Sprue or Parts Sticking? Here Are Some Solutions

When a sprue or part sticks, the result of trying to unstick it is often more scratches or undercuts, making the problem worse and the fix more costly. Here’s how to set up a proper procedure for this sticky wicket.

Read More

Best Methods of Molding Undercuts

Producing plastics parts with undercuts presents distinct challenges for molders.

Read More
processing tips

Improve The Cooling Performance Of Your Molds

Need to figure out your mold-cooling energy requirements for the various polymers you run? What about sizing cooling circuits so they provide adequate cooling capacity? Learn the tricks of the trade here.

Read More
processing tips

How to Get Rid of Bubbles in Injection Molding

First find out if they are the result of trapped gas or a vacuum void. Then follow these steps to get rid of them.

Read More

Read Next

Injection Molding

Processor Turns to AI to Help Keep Machines Humming

At captive processor McConkey, a new generation of artificial intelligence models, highlighted by ChatGPT, is helping it wade through the shortage of skilled labor and keep its production lines churning out good parts.

Read More
sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
Extrusion

Troubleshooting Screw and Barrel Wear in Extrusion

Extruder screws and barrels will wear over time. If you are seeing a  reduction in specific rate and higher discharge temperatures, wear is the likely culprit.   

Read More
chemical foaming agents stuctural foam molding