Plastics Recycling LATAM
Published

Thermoforming Helps Harvest the Wind

It was a decades-old relationship that led to the development of an exciting new application for twin-sheet thermoforming.

Share

Apparently it pays to be memorable in high school after all. It was a decades-old relationship between George Lawton, an engineer for Kintz Plastics, and a member of the design team at Optiwind that led to the development of an exciting new application for twin-sheet thermoforming: a cover for the vertical surfaces on Optiwind’s wind turbines.

Kintz Plastics Inc., in the upstate New York town of Howes Cave, has been an industry leader in thick-gauge thermoforming since it opened in 1976. The family-owned company uses vacuum forming, pressure forming, and twin-sheet forming to supply covers, bezels, and housings for applications ranging from biomedical equipment like blood-analysis machines to air-conditioned pet carriers to drainage and storm-water projects.

With annual sales in the range of $10 million to $15 million and more than 100 employees, Kintz’s plant includes a 30,000-ft² Technology Center that integrates design and engineering departments. The thermoformer’s 35 years of experience in materials, processing, part and tool design (Kintz guarantees its molds for the life of the project), painting, and screen printing, have helped it get involved in projects early in the design phase. Kintz’s ability to work with customers on a soup-to-nuts basis comes in handy when an altogether new project heads it way.

“We didn’t know Optiwind, nor about the possible application, until they came to us about 18 months ago,” recalls Wynn Kintz, CEO. “But one of their guys went to high school with George, and things progressed from there.”

The project has required several tooling iterations. The tool itself weighs more than a ton. “That whole process was a collaborative effort between their team of designers and our engineering/design group,” states Kintz. “Lots of meetings, lots of drawings, lots of modifications, none of which is surprising on a new application.”

The part is made up of numerous HDPE cones that are formed into the sheet. The complete part stands 66 in. wide x 105 in. tall, representing one of the largest Kintz has produced. The parts are formed on rotary thermoformers from Maac Machinery Corp., Carol Stream, Ill. “There aren’t many thermoformers capable of producing a part this complicated and this large,” Kintz says. “The sheet is only 0.062-in. thick, and the window to get all the different parts to bond is very narrow.”

The Optiwind turbines themselves are a shade under 200-ft tall and require a cover that is lightweight but strong enough to withstand wind and weather. “Twin-sheet thermoforming was key to the design of the wind turbine,” says David Hurwitt, marketing v.p. for Optiwind in Torrington, Conn.

The Optiwind turbines are designed for mid-size applications, such as schools, hotels, retailers, farms, and municipalities. They are said to be more compact and quieter than traditional turbine designs and are built right on the site of the energy consumer. The first test turbine with the Kintz cover was installed at a farm in Torrington last year. A full-scale commercial launch is planned for 2011.

Kintz expects to produce thousands of parts a year for the project (roughly 250 parts go into each turbine). The covers are interchangeable on Optiwind turbines of different sizes. 

Shell Polymers (Real)ationships start here ad
New Tinius Olsen VectorExtensometer testing
LKIMM
Insert molding automation
Orbetron new for 2024 micro twin screw feeder
Go Beyond Blending
Cranes, Conveyors, Racks, Loaders, Accessories
Vacuum Tech for Plastics Manufacturers
Make Every Pellet Count
NPE2024: The Plastics Show
Bole Machinery
Dover Clear

Related Content

Manufacturer Helps Clean Up Global Waterways with Reclaimed Plastics

RSP and Oceanworks partnership diverts plastic wastes from waterways for incorporation into new products.

Read More
Thermoforming

Thermoforming PCR: An Equipment Supplier’s Pointers

Thermoforming PCR is not radically different from forming virgin, but variation in recycled materials can require extra care to get a consistent end result. Start by examining every aspect of the process from the sheet (and extrusion process if run inline) to the final trim.

Read More
Thermoforming

Novel ‘Clamtainer’ Extends Thermoformer's Reach in Packaging

Uniquely secure latching expands applications for Jamestown Plastics’ patented clamshell package design.

Read More

Cobot Creates 'Cell Manufacturing Dream' for Thermoformer

Kal Plastics deploys Universal Robot trimming cobot for a fraction of the cost and lead time of a CNC machine, cuts trimming time nearly in half and reduces late shipments to under 1% — all while improving employee safety and growth opportunities.

Read More

Read Next

sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
close up on technology

Processor Turns to AI to Help Keep Machines Humming

At captive processor McConkey, a new generation of artificial intelligence models, highlighted by ChatGPT, is helping it wade through the shortage of skilled labor and keep its production lines churning out good parts.

Read More
industry 4.0

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Make Every Pellet Count