Reality Behind
Published

AM’s Getting ‘Bigger’ In More Than Just Cars

ADDITIVE MANUFACTURING

Large-scale additive manufacturing is disrupting the (already disruptive) 3D printing field.

Share

When Cincinnati Inc. (CI) in Harrison, Ohio, one of that state’s oldest machine-tool builders, decided to diversify its business, it probably wasn’t expected that this 100-year-plus company would jump into the fast-moving additive-manufacturing field. But the Department of Energy’s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., was looking for a partner to bring to market large-scale additive manufacturing that would also lower the cost and increase the speed of the process. Matt Garbarino, marketing manager for CI, said that it quickly become apparent that CI’s laser-cutting system could be modified to make large 3D-printed parts. So CI adapted its system to include an extruder, cutting tool, pellet-feed mechanism and control software. “And BAAM was born,” Gabarino said.

BAAM (Big Area Additive Manufacturing) is a large-scale system capable of printing polymer components up to 10 times larger and at speeds 200 to 500 times faster than existing AM machines. BAAM was designed to allow 3D printing to be used for production of large parts, quickly.
CI, ORNL and Local Motors of Chandler, Ariz., made quite a splash at the IMTS 2014 show in Chicago when they created the world’s first 3D-printed car on-site at the tradeshow. In 2015, CI and ORNL made headlines again when their next-generation manufacturing process took on a 50-year-old icon as researchers transformed the classic Shelby Cobra sports car into a 3D-printed laboratory on wheels.

Researchers printed the Cobra at the U.S. Dept. of Energy’s Manufacturing Demonstration Facility at ORNL, using CI’s BAAM machine. The 635-kg car includes 227 kg of BAAM-printed parts, using carbon-fiber-reinforced ABS provided by SABIC Americas, Houston. “It made the rounds around the world in 2015 as a showpiece of where 3D printing can go,” Garbarino said. 

BEYOND CARS
But BAAM wasn’t created just to 3D print cars—it can go bigger. The machine introduces significant new manufacturing capabilities to a wide range of industries, including aerospace, appliances, and robotics.

For instance, ORNL, CI and other industrial partners worked to create the Additive Manufacturing Integrated Energy (AMIE) demonstration, which seeks to become a model for energy-efficient systems that link buildings, vehicles, and the electrical grid. Rapid-prototyping and additive-manufacturing processes took the AMIE project from concept to completion in less than a year. Both a house and a vehicle were printed with BAAM.

The team manufactured and connected a natural-gas-powered hybrid electric vehicle with a solar-powered building to create an integrated energy system. Power can flow in either direction between the vehicle and building through a new wireless technology. The  approach allows the car to provide supplemental power to the 210-ft2 house when the sun is not shining. Carbon-fiber/ABS was used for about 80% of the house components and 30% of the car. The 38 x 12 x 13 ft building was designed by architecture firm Skidmore, Owings, and Merrill through the Univ. of Tennessee-ORNL Governor’s Chair for Energy and Urbanism.

Other applications CI has worked on include a 3D-printed replica of an F-22 Raptor drone and a 3D-printed kayak. In addition, CI will use BAAM to print a replica of an Orion spacecraft in several large pieces and assemble them on-site at the RAPID 2016 show May 16-19 in Orlando, Fla.

“It has been a phenomenon compared with other machinery—no one else is doing this at the level we are,” Garbarino said. “We have different industries contacting us because so many of them are interested in additive manufacturing and are looking to find a way to leverage it. As time goes on, the limit for BAAM will be our imagination.” 

OTHER LARGE-SCALE AM DEVELOPMENTS
Strangpresse in Youngstown, Ohio, was founded in 2014 as an affiliate of Hapco Inc., which makes hot-air welding tools. The company is focused on fully controllable, lightweight, thermoplastic extruders, primarily for AM. The machine builder has a licensing agreement with ORNL regarding use of patents related to BAAM. Under the agreement, Strangpresse may make, use, or sell the lab’s patented developments of materials, processes, and controls that enable the manufacture of parts much larger than current standards. Strangpresse is also working with MD Plastics, Columbiana, Ohio (mdplastics.com), to develop a vertical, robot-arm mounted extrusion head that can deposit a continuous strand of material at about 100 lb/hr. MD Plastics develops and produces plasticating components for injection molding and extrusion.

Charles George, CEO of Hapco (hapcoinc.com) and a principal of Strangpresse, said that the company is focused on the composites side—specifically, processing long fibers in order to strengthen the “build,” or part. “Most people can process carbon fiber at a short length, but the challenge is processing carbon fiber and maintaining the fiber length,” he said. “A lot of research is being done on the orientation of carbon fibers to try and figure how to control and understand the direction of fibers.”

In addition, Thermwood Corp., Dale, Ind. (thermwood.com), a maker of CNC machining systems, is working on a large-scale additive-manufacturing (LSAM) program that can perform both the “additive and subtractive” functions on the same machine. Called “near-net-shape” manufacturing, this approach uses a high-volume thermoplastic 3D printer to quickly create a part that is close to the final shape. The CNC cutting head then machines the part to the final dimensions.

Thermwood’s developmental system utilizes a 1.75-in. extruder custom engineered by American Kuhne, Ashaway, R.I. Thermwood expects to outfit this initial test machine, which can print parts up to 10 x 10 x by 5 ft, with a five-axis gantry trimming system in the next few months. 

Testing included initial validation of Thermwood’s MeltShape Technology for enhanced control of layer shape and improved bonding between layers. This new, patent-pending approach uses one or more shaping wheels to form and compress the plastic melt as it is being extruded, ensuring that each new layer is the proper shape and thickness and that it bonds firmly to previously applied material.
Thermwood plans to continue this development effort with the goal of offering these machines in a variety of large sizes for commercial applications, specifically targeting aerospace patterns and molds. 

AM Workshop
Reality Behind
I Am a Visionary
Advantage temperature control units
Insert molding automation
structural foam molding chemical foaming agents
Guill - World Leader in Extrusion Tooling
Shuttle Mold System
Dover Clear
New 2024 Twin Screw Report
Dri-Air
Windmoeller

Related Content

Daimler, OMIC Evaluate Wire-Fed DED for Moldmaking

3D printing a core and cavity on machine from Gefertec, followed by machining, allowed for a complete mold tool to be produced in three days.

Read More

Custom Molder Manages Growth on Several Fronts

Adding people, plants and machines, expanding capabilities in LSR, high-tonnage presses, automation and 3D printing—EVCO Plastics maintains momentum through challenging times.

Read More
best practices

Getting into Plastics Additive Manufacturing? Avoid these Six Common Errors

There are a lot of 3D printing technologies out there, and it’s not uncommon for processors new to additive manufacturing to get tripped up. Here are some typical snafus, along with advice on how to avoid them before you start making parts.

Read More
editorial

Business Slowing? There's Still Plenty of Stuff to Do

There are things you may have put off when you were occupied with shipping parts to customers. Maybe it’s time to put some of them on the front burner.  

Read More

Read Next

close up on technology

Processor Turns to AI to Help Keep Machines Humming

At captive processor McConkey, a new generation of artificial intelligence models, highlighted by ChatGPT, is helping it wade through the shortage of skilled labor and keep its production lines churning out good parts.

Read More
Extrusion

How Polymer Melts in Single-Screw Extruders

Understanding how polymer melts in a single-screw extruder could help you optimize your screw design to eliminate defect-causing solid polymer fragments.  

Read More
best practices

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Reality Behind