chimical foaming agents structural foam molding
Published

Dead Screw Talking

There's a lot you can learn by conducting a post-mortum examination of your screw.

Share

Screws don’t really die; they just pass away to the scrap yard. But you can learn a lot by performing an “autopsy” on your screw before you heave it. Examining the carcasses of worn or poor-performing screws can often uncover information that is difficult to determine with the screw still in service. I call this process “forensic screw design.”
 

WHAT THE ‘CARCASS’ SAYS


Screws are seldom removed when they are performing at the expected performance level. So become a forensic examiner yourself and carefully examine every screw when it is removed to determine the telltale signs of its demise. The information in the “carcass” will usually provide strong clues as to why there were performance issues and how they might be corrected.

Areas of high wear on the screw flights can reveal either a design issue or an alignment problem. If the flight has a burr on the trailing edge, it means the screw has a high, localized, and unbalanced pressure that is forcing the screw aggressively to one side of the barrel. This is causing the flight to gall with the barrel, and the flight is being distorted by the mechanical pressure. This usually occurs in an area that is plugging with solids, causing very high pressure on one side of the screw.

The solution would be more melting area in the design to relieve the plugging and pressure point, or a design that balanced the pressure better. These extreme pressure points can show up as surging output as these areas plug and unplug, as I mentioned in an my May column on surging.
If the flight has a burr on both sides, it usually indicates that the barrel is not properly aligned or is bent, and the screw flight is simply being crushed as it is forced to rotate in a space that is not concentric with the screw. Failure of the flight’s hard-surfacing material is always suspected to be due to a poor weld but may in fact be due to either severe abrasion against the barrel from a localized high-pressure area or flexing of the screw due to misalignment.

Wear on the flights or on a mixer at the screw tip indicates a bent barrel. Many times this is due to a large, unsupported weight on the end of the barrel or misalignment of the front support. Wear on the drive end before the start of the flights indicates that the feed throat is not aligned properly with the drive quill. If the wear extends farther on to the early flights, then both the barrel and feed throat may not be aligned with the drive quill.

Areas that have a blue tint to the screw metal indicate the screw is being subjected to a very high temperature in that area, probably exceeding 750 F, which will result in a broad temperature gradient in your extrudate. Again, that indicates that area is plugging with solids and being exposed to very high shear stress or is being rubbed against the barrel with such force that it is causing high frictional heat.

Heavy buildup of polymer on areas of the screw can indicate several things. It could suggest an area of insufficient polymer flow, allowing material to stagnate and degrade. Or it could indicate an extremely hot spot that causes polymer degradation. This could be caused by the screw design or by problem with a heater/thermocouple on the barrel. Areas showing several different colors of material buildup also indicate areas of low or stagnant flow. These can be corrected by increasing the flow rate in these areas—usually by reducing the channel volume. This is often an issue in the melt channel of barrier screws where the channel is too deep or narrow.

Flights or other elements that appear “washed out” indicate an attack by hard contaminants or fillers in the polymer. If the wash-out is localized, the wear rate can often be reduced by allowing for lower flow rates in that area. At extremely high velocities, contaminants or fillers work like an abrasive paste, cutting their own clearance.

Dri-Air
structural foam molding chemical foaming agents
Cranes, Conveyors, Racks, Loaders, Accessories
Konica Minolta
Konica Minolta CM-36dG
Guill - World Leader in Extrusion Tooling
Dover Clear
Shuttle Mold System
Make Every Pellet Count
Realationships
AM Workshop
Insert molding automation

Related Content

Belling Machine Forms 'Rieber' Socket in PVC-O Pipe

Italy’s SICA has developed an innovative Rieber belling process specific for PVC-O pipes. At the same operating pressure, these pipes require a wall thickness of about 35-40% less than those in conventional PVC pipe and allow the construction of water supply pipes up to 25 bar of operating pressure.

Read More
SPONSORED

Fully Automated Extrusion Process Enables Use of Composites for Manufacturing Pressure Tanks

Amtrol was looking for a more cost-effective means to produce thin-wall liners for a new line of pressure tanks. With the help of a team of suppliers, they built one of the world’s most sophisticated extrusion lines.

Read More

Wisconsin Firms Unite in Battle Against Covid

Teel Plastics opened new plant in record time, partnering with AEC & Aqua Poly Equipment Co. to expand production of swab sticks to fight pandemic.

Read More

How to Select the Right Tooling for Pipe Extrusion

In pipe extrusion, selecting or building a complementary set of tooling often poses challenges due to a range of qualitative factors. Here’s some guidance to help you out.  

Read More

Read Next

Injection Molding

Processor Turns to AI to Help Keep Machines Humming

At captive processor McConkey, a new generation of artificial intelligence models, highlighted by ChatGPT, is helping it wade through the shortage of skilled labor and keep its production lines churning out good parts.

Read More
Extrusion

Troubleshooting Screw and Barrel Wear in Extrusion

Extruder screws and barrels will wear over time. If you are seeing a  reduction in specific rate and higher discharge temperatures, wear is the likely culprit.   

Read More
Automation

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Konica Minolta Spectrophotometer CM-36dG