Specialist injection molding automation solutions
Published

Extruder Inspection & Vibration Analysis Detects Problems Early, Prevents Failures

Close Up: Extrusion

Service is offered to all types of extrusion processors for all of types and makes of extruders and motors.

Share

Henschel America is offering a reportedly unique service that combines an extruder inspection with an in-depth vibration analysis—a one-two punch that will reportedly enable problems with gearboxes, motors, screws, and the like to be more quickly pinpointed, so processors can avoid unplanned shutdowns due to catastrophic machinery failure.

This inspection/analysis service is offered to all types of extrusion processors for all of types and makes of extruders and motors, says Jerry Eber, president of Henschel America, Green Bay, Wis. (henschelusa.com). The service also can be used to identify issues with auxiliary equipment like side-feeders, melt-filtration devices, and melt pumps, among others.

About 50% to 75% of smaller extrusion houses do not have any type of vibration analysis equipment, according to Eber. He also notes that most of the companies that provide vibration analysis services lack in-depth knowledge of extruders and components such as gearboxes. “What makes this service unique is that it combines both vibration analysis and extruder inspection,” Eber states.

Besides pinpointing mechanical problems, Henschel technicians also identify operator mistakes, maintenance oversights, and the like. Common problems like misalignments or issues with the structure of the machine frame or the flooring subsurface are also quickly identified, according to Eber.

A Henschel technician evaluates the extruder while it is running, using instruments to check for vibration, temperature control, oil control, etc., while discussing issues with plant maintenance personnel and operators. If this initial inspection suggests that any part of the extruder may have problems, the technician will utilize a variety of methods to find the trouble spot. This process takes around two to five hours per extruder.

If this suspicion is confirmed, the extruder will be stopped and the gearbox (or motor, barrel section, etc.) will be opened and visually inspected. Potential remedies will be discussed.

“Motors and barrels are relatively easy to exchange,” Eber says. “Gearboxes, on the other hand, are generally custom made and thus have very long lead times. The good news is the way that modern gearboxes are built allows you to predict potential failures months, if not years, in advance.  But you need to be able to understand them and know where to look. We can help the processor do this and plan a time to exchange potentially failing parts in accordance with the schedule of the company.”

Early repair means less expensive repair, states Eber. “Usually, only minor parts, mainly bearings and seals, have to be replaced when problems are detected early on,” he explains. “Early detection of potential failures also allows the extruder to keep running for an ongoing period,” continues Eber. “Production and maintenance can plan a set time for replacement or repair of the gearbox, keeping costs under control. Parts can be ordered early to shorten the time when the extruder is down.”

In one real-world example, Henschel technicians detected a pitting pattern in an extruder gearbox that had not been detected by conventional vibration analysis (see Fig. 1). As a result, the processor and Henschel planned a major overhaul of this gearbox. Needed parts and bearings were ordered in advance. The complete overhaul was scheduled to coincide with the processor’s planned shutdown. “If we had not done this inspection the gearbox would have completely failed in six to 18 months and cost the processor hundreds of thousands of dollars in lost production,” states Eber.

For another customer, the Henschel service detected a problem with a thrust bearing that also could not be detected with standard vibration analysis (Fig. 2). Too much sealant had blocked an oil line. The swap-out for a new bearing took a few hours. Had it gone undetected, the cost for this failure could have run into six figures, considering that the extruder would likely have been idled for months.

In yet another case, the inspection showed a pattern on the gears (Fig. 3) that suggested that the gearbox had been used to unblock frozen screws. This might not cause problems to the gears in the short term, but over the long term it will result in offset bearings and premature failure of the gears. Here, an early adjustment combined with operator training and a change in software avoided future problems and saved money for repairs.
 

Plastics Recycling Latam
pipe and profile extrusion chemical foaming agents
We Love Powders NPE
Bole Machinery
Blending Revolution
Improved Stainless 420 ESR
NPE2024: The Plastics Show
extrusion lines for encapsulant film for solar
Dover Clear
LKIMM
Shell Polymers (Real)ationships start here ad
Trust the experts for fast & efficient changeovers

Related Content

How Polymer Melts in Single-Screw Extruders

Understanding how polymer melts in a single-screw extruder could help you optimize your screw design to eliminate defect-causing solid polymer fragments.  

Read More
Extrusion

Understanding Melting in Single-Screw Extruders

You can better visualize the melting process by “flipping” the observation point so that the barrel appears to be turning clockwise around a stationary screw.

Read More

Cooling the Feed Throat and Screw: How Much Water Do You Need?

It’s one of the biggest quandaries in extrusion, as there is little or nothing published to give operators some guidance. So let’s try to shed some light on this trial-and-error process.

Read More

The Importance of Barrel Heat and Melt Temperature

Barrel temperature may impact melting in the case of very small extruders running very slowly. Otherwise, melting is mainly the result of shear heating of the polymer.

Read More

Read Next

Extrusion Know How

Troubleshooting Screw and Barrel Wear in Extrusion

Extruder screws and barrels will wear over time. If you are seeing a  reduction in specific rate and higher discharge temperatures, wear is the likely culprit.   

Read More
Recycling

Advanced Recycling: Beyond Pyrolysis

Consumer-product brand owners increasingly see advanced chemical recycling as a necessary complement to mechanical recycling if they are to meet ambitious goals for a circular economy in the next decade. Dozens of technology providers are developing new technologies to overcome the limitations of existing pyrolysis methods and to commercialize various alternative approaches to chemical recycling of plastics.

Read More
Injection Molding

Processor Turns to AI to Help Keep Machines Humming

At captive processor McConkey, a new generation of artificial intelligence models, highlighted by ChatGPT, is helping it wade through the shortage of skilled labor and keep its production lines churning out good parts.

Read More
Specialist injection molding automation solutions