Dosing Done Right
Published

Victrex Develops PAEK for Additive Manufacturing; Leads Consortium for Advancing AM Technologies

New generation materials rival earlier versions for both laser sintering and fusion filament fabrication processes.

Share

Pioneer of PEEK Victrex (U.S. office in West Conshohocken, Penn.), has been developing materials for different additive manufacturing (AM) processes. The company leads a consortium of companies and institutions and was awarded funding from the U.K.’s agency for innovation, Innovate UK, in 2016 to carry out intensive pioneering R&D to advance AM technologies. The other members include Airbus Group Innovations, EOS, University of Exeter Center for Additive Layer Manufacturing, E3D-Online, HiETA Technologies, South West Metal Finishing, and 3T-RPD.

One key focus, in particular, is high-temperature, affordable polymer composites for AM aerospace applications. Victrex will present detailed technical results of its developmental PAEK materials at the bi-annual Additive Manufacturing conference of the University of Exeter Center for Additive Layer Manufacturing (CALM), in September 2018.

The first of these is a high-strength material in fine powder form for laser sintering (LS) which is said to attain lower refresh rates, resulting in improved recycling for unsintered powder. The second is a filament with a better strength than existing polyaryletherketone (PAEK) materials and better printability for fused filament fabrication processes (FFS/FDM).

Said Victrex CEO Jakob Sigurdsson, “These next-generation Victrex PAEK materials mark a decisive step forward, having potential to transform multiple applications, including aerospace and medical. The exciting progress is based on continued intense R&D at Victrex and excellent collaboration within the Victrex led consortium of companies and institutions pursuing innovation in additive manufacturing. Through this consortium we’re already seeing demonstrator parts that show how AM processes, coupled with high-performance materials, transform thinking to create truly innovative parts based on increased design possibilities.”

The PAEK incumbent materials on the market, although used in some AM applications, were designed for conventional manufacturing methods, such as machining and injection molding. As such, they have some features that are not optimal for AM processes. A first generation PAEK material for LS can only be recycled in a very low extent and required nearly full refresh of the printing bed with new powder, and PEEK filaments available for FFS have poor interlayer bonding, leading to a loss in Z-strength.

In contrast, the new developmental polymer grades have shown encouragingly low refresh rates (improves recycle for unsintered powder) with similar mechanical properties in LS, and in FFS good mechanical properties and printability. Said John Grasmeder, chief scientist at Victrex. The powder recycle work for laser sintering, using the new Victrex developmental polymer grades has gone very well, with no measurable loss of properties when test components were made from partially recycled powder. We believe it will be possible to reuse all of the non-sintered powder that is recovered after a build run. This will result in a significant reduction in material cost compared to current PAEK materials where up to 40% of the polymer is wasted and cannot be recycled.”

Meanwhile, the new Victrex PAEK filament and powder tie in with technologies developed by other members of this Innovate UK project. EOS has recently released a new automation-ready manufacturing platform for the LS process of plastics parts on an industrial scale (EOS P 500) with the capability to print high-performance polymers at high temperatures. Selected materials of the consortium are evaluated with the EOS P 500 platforms.

Victrex is planning to continue pre-commercial testing of a new PAEK filament product in conjunction with consortium partner E3D, who has recently commercially released a new water-cooled filament extruder head especially optimized for this new PAEK filament.

Processing additives for Plastics recycling stream
Insert molding automation
Shell Polymers (Real)ationships start here ad
Make Every Pellet Count
NPE2024: The Plastics Show
Dover Clear
Go Beyond Blending
extrusion lines for encapsulant film for solar
Gardner Business Media, Inc.
Guill - World Leader in Extrusion Tooling
Windmoeller
Orbetron new for 2024 micro twin screw feeder

Related Content

3D Printing of Injection Molds Flows in a New Direction

Hybrids of additive manufacturing and CNC machining can shorten tooling turnaround times.

Read More

Production Tool, Prototype Time

Mantle's metal 3D printing technology targeted toolmaking and injection molders and moldmakers are taking notice.

Read More

New Tool Steel Qualified for Additive Manufactured Molds and Dies

Next Chapter Manufacturing says HTC-45 — an optimized H-13 — will offer superior thermal transfer and longer tool life.

Read More

Additive Fusion Technology Optimizes Composite Structures for Demanding Applications

9T Labs continues to enhance the efficiency of its technology, which produces composite parts with intentionally oriented fibers.

Read More

Read Next

Injection Molding

Processor Turns to AI to Help Keep Machines Humming

At captive processor McConkey, a new generation of artificial intelligence models, highlighted by ChatGPT, is helping it wade through the shortage of skilled labor and keep its production lines churning out good parts.

Read More
Extrusion Know How

How Polymer Melts in Single-Screw Extruders

Understanding how polymer melts in a single-screw extruder could help you optimize your screw design to eliminate defect-causing solid polymer fragments.  

Read More
best practices

Why (and What) You Need to Dry

Other than polyolefins, almost every other polymer exhibits some level of polarity and therefore can absorb a certain amount of moisture from the atmosphere. Here’s a look at some of these materials, and what needs to be done to dry them.

Read More
New Tinius Olsen VectorExtensometer testing