Dosing Done Right
Published

Eastman Launches Chemical Recycling Innovation for Complex Plastic Waste

Eastman’s ‘carbon renewal technology’ can recycle difficult to recycle plastic waste such as flexible packaging and films.

Share

Last month, I reported on two companies that are pursuing chemical recycling technologies that will contribute to the ‘circular economy’ and sustainable development: Braskem, which is aiming to accelerate the development of chemical recycling of consumer waste products such as grocery bags and packaging films; and, Eastman Chemical, which announced the launch of an advanced circular recycling technology that uses polyester waste which cannot be recycled by current mechanical methods. The latter’s goal is to be operating a full-scale, advanced circular recycling facility within 24 to 36 months.

Now, Eastman has unveiled the introduction of a new innovation: ‘carbon renewal technology’ reportedly capable of recycling some of the most complex plastic waste, including non-polyester plastics and mixed plastics that cannot be recycled with conventional recycling technologies. With this new recycling technology, materials such as flexible packaging and plastic films, among others, can be diverted from landfills and converted into building blocks for downstream chemical production.

Let me say that the company is aiming to move this along as well, having completed pilot tests at its Kingsport site with plans for commercial production within this year by leveraging existing assets. Eastman is exploring commercial collaborations to yield mixed plastic waste to be recycled through this technology at commercial scale. Such upstream potential partners include waste management companies that lack viable outlets for materials. Eastman sources note that downstream, brands and end users are making a commitment to increase the recycled content of their products, yet there’s not enough recycled material available today through mechanical recycling to meet these commitments.

Here is some further clarification on Eastman’s carbon renewal technology. This is a large scale, highly-efficient recycling technology that can handle non-polyester plastics and mixed plastics that can’t be recycled with conventional recycling technology. By modifying the front end of Eastman's cellulosics production, carbon renewal technology now converts plastic waste back to simple and versatile molecular components. In this process, the waste plastic is reacted with water and oxygen at high temperature and pressure back into the basic building blocks for Eastman's acetyl and cellulosics product lines—carbon monoxide and hydrogen. Eastman uses these building blocks to make methanol and methanol derivatives, including methyl acetate, acetic acid and acetic anhydride. These materials are then used for the manufacture of a variety of consumer products.

As such, despite some seeming similarities, Eastman’s carbon renewal technology has a very different purpose from combustion or incineration for energy. As an example, using carbon renewal technology, products such as LCD screens, fiber for apparel or durable cellulosic plastic goods can be made from renewable cellulose and recycled plastic waste.

Eastman will aim to use the technology to produce a variety of materials, not just plastics and Eastman cellulosics products, but also products for such market applications as textiles, nonwovens, ophthalmics, durables and more. According to company sources, the building blocks produced through carbon renewal technology reportedly retain the valuable performance properties and quality that customers expect from Eastman products which include: Cellulosic polymers such as Naia fibers for clothing, performance films for LCD screens, coatings for automotive, and durable goods such as eye-glass frames.

We Love Powders NPE
ArburgXworld
Trust the Experts - Purgex Purging Compounds
Shell Polymers (Real)ationships start here ad
Uway LLC
large tonnage injection molding productivity
Konica Minolta
Advantage temperature control units
HAIDLMAIR NPE2024
Blending Revolution
Shuttle Mold System
AM Workshop

Related Content

sustainability

How to Extrusion Blow Mold PHA/PLA Blends

You need to pay attention to the inherent characteristics of biopolymers PHA/PLA materials when setting process parameters to realize better and more consistent outcomes.    

Read More

Automotive Awards Highlight ‘Firsts,’ Emerging Technologies

Annual SPE event recognizes sustainability as a major theme.

Read More
sustainability

In Sustainable Packaging, the Word is ‘Monomaterial’

In both flexible and rigid packaging, the trend is to replace multimaterial laminates, coextrusions and “composites” with single-material structures, usually based on PE or PP. Nonpackaging applications are following suit.

Read More
plant tour

US Merchants Makes its Mark in Injection Molding

In less than a decade in injection molding, US Merchants has acquired hundreds of machines spread across facilities in California, Texas, Virginia and Arizona, with even more growth coming.

Read More

Read Next

NPE

Beyond Prototypes: 8 Ways the Plastics Industry Is Using 3D Printing

Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples to look for at NPE2024.

Read More
best practices

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Experience the Ultimate NPE