Guill - World Leader in Extrusion Tooling
Published

Calibrate Those Instruments

Make sure that your instruments are calibrated on a regular bases and also do a check and balance when gathering data. Never trust what you think you see the first time.

Share

I was recently asked to visit a sheet processor to determine the cause of a major screw design problem. So, as always, I started at the beginning to gather all of the technical information to determine the root cause. This facility had 5 large extrusion sheet lines, and they were issues with all 5 extruders.

With the extruder at room temperature, I set up three dial indicators on the discharge flange of the barrel in the X,Y and Z axis.  Then I turned on the barrel heaters to the standard zone setting to make sure that the barrel thermally expanded in the Z-axis direct as much as it should theoretically, and that the X and Y indicators move minimally.

 

The simple equation to determine the amount of expansion that a barrel should grow is:

 

ΔL=0.00000633 X ΔT X L

where:

                                             ΔL = The change in length

                                             ΔT = The change in temperature, in this case from room

                                                       temperature to the barrel zone setting

                                                     

                                               L =  The heated length of the barrel

 

Amazingly the barrel grew within about  0.030-in. of the theoretical change in length, which in this case was approximately 0.750 in.

 

Then I measured the flight OD on several of the screws for various designs to determine if there was a consistent wear pattern. There was, so that was noted.

 

Then I gathered all of the process data.  This is a very important part of doing a “CSI” on screws.  This is where you collect the given throughput rate at a given screw speed against the headpressure during that timed rate check, motor load and melt temperature.

 

The motor load reading is taken from ammeter on the control panel; the screw speed is taken from the tachometer.  If at all possible, it is best to have the customer’s plant manager to check the motor load with a hand held meter to verify that the ammeter on the control panel is reading correctly.  As for checking the screw speed, this typically can be done by using a stop watch and counting the rotation of the drive quill at the back of the gearbox.

 

In this case the control panel ammeter was reading correctly, but the screw speed was not.  The customer’s setup sheet showed that their standard setup was to have the extruder operating at 70 rpm, but when I counted the revolutions of the drive quill, I was getting 92 rpm.  This is an error of 24%! 

 

I then checked the tachometer on the line next to the one that I was gathering the process data from and the tachometer on it read 86 rpm but when I did the count, it was only rotating at 70 rpm. This meter was mis-calibrated by 23%!!!

 

So, the moral of the story is, the only thing worse than no data is BAD data.  In this case, the customer immediately had their maintenance people re-calibrate all of their control instruments.

 

NOTE: Sometimes the screw rotation is faster than what a person is able to visually observe. In these cases, I take the advice given to me when I was a kid by an old mechanic mentor of mine (who only had a 4th grade education)...I  “count the clicks.” I had no idea what he meant until he showed me.

Howard took this machinist scale (a pencil or pen will work) and turned on the chuck of the engine lathe in his shop, then took the scale and let it rub against the chuck. On an extruder it can be a small bolt in the back of the rotating drive quill or the drive key on the shank of the screw.  Then with your stopwatch in one hand the “clicker” in the other, you can count the number of times that bolt or key hits the end of the scale, pencil or pen...or the number of clicks.  “Count the clicks.”  Very simple but very effective.

 

Just make sure that your instruments are calibrated on a regular bases and also do a check and balance when gathering data.  Never trust what you think  you see the first time.

__________________________________________________________________________________


Tim Womer is a recognized authority in plastics processing and machinery with a career spanning more than 35 years. He has designed thousands of screws for all types of single-screw plasticating. He now runs his own consulting company, TWWomer & Associates LLC. Contact: (724) 355-3311; tim@twwomer.com; twwomer.com
 

New 2024 Twin Screw Report
pipe and profile extrusion chemical foaming agents
Blending Revolution
Insert molding automation
Bole Machinery
Trust the experts for fast & efficient changeovers
New Tinius Olsen VectorExtensometer testing
We Love Powders NPE
Dover Clear
Vacuum Tech for Plastics Manufacturers
Shell Polymers (Real)ationships start here ad
Guill - World Leader in Extrusion Tooling

Related Content

Postconsumer

Avoid Four Common Traps In Granulation

Today, more than ever, granulation is an important step in the total production process. Our expert explains a few of the many common traps to avoid when thinking about granulators

Read More
best practices

Cooling the Feed Throat and Screw: How Much Water Do You Need?

It’s one of the biggest quandaries in extrusion, as there is little or nothing published to give operators some guidance. So let’s try to shed some light on this trial-and-error process.

Read More

How Polymer Melts in Single-Screw Extruders

Understanding how polymer melts in a single-screw extruder could help you optimize your screw design to eliminate defect-causing solid polymer fragments.  

Read More
Blow Molding

Understanding the ‘Science’ of Color

And as with all sciences, there are fundamentals that must be considered to do color right. Here’s a helpful start.

Read More

Read Next

sustainability

Advanced Recycling: Beyond Pyrolysis

Consumer-product brand owners increasingly see advanced chemical recycling as a necessary complement to mechanical recycling if they are to meet ambitious goals for a circular economy in the next decade. Dozens of technology providers are developing new technologies to overcome the limitations of existing pyrolysis methods and to commercialize various alternative approaches to chemical recycling of plastics.

Read More
Automation

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Extrusion Know How

How Polymer Melts in Single-Screw Extruders

Understanding how polymer melts in a single-screw extruder could help you optimize your screw design to eliminate defect-causing solid polymer fragments.  

Read More
reduce mold change time injection molding