Maguire Ultra
Published

NIST Looks at Big Picture of Nanoparticle Manufacturing

New paper aims to identify problems that are common for different materials, processes and applications.

Share

A recent paper in the journal ACS Applied Nano Materials prepared by the National Institute of Standards and Technology (NIST)—Nanoparticle Manufacturing—Heterogeneity Through Processes to Products—is the culmination of a study initiated by a workshop organized by NIST that focused on the fundamental challenge of reducing or mitigating heterogeneity, the inadvertent variations in nanoparticle size, shape and other characteristics that occur during their manufacturing.

The authors point out that today’s engineered nanoparticles are integral components in everything from the quantum dot nanocrystals coloring the brilliant displays of state-of-the-art televisions and nanocomposites, to the miniscule bits of silver helping bandages protect against infection. However, commercial ventures that look to profit from these tiny building blocks face quality control issues that, if not addressed, can reduce efficiency, increase production costs and limit commercial impact of the products that incorporate them.

With the aim of helping to overcome these obstacles, the NIST and the nonprofit World Technology Evaluation Center (WTEC) advocate that nanoparticle researchers, manufacturers and administrators “connect the dots” by considering their shared challenges broadly and tackling them collectively rather than individually. This includes transferring knowledge across disciplines, coordinating actions between organizations and sharing resources to facilitate solutions.

The new paper’s researchers from NIST’s Center of Nanoscale Science and Technology and Materials Science and Engineering Division, according to lead author NIST physical scientist Samuel Stavis, “looked at the big picture of nanoparticle manufacturing to identify problems that are common for different materials, processes and applications….Solving these problems could advance the entire enterprise.”

Jeffery Fagan, NIST chemical engineer and co-author notes that heterogeneity can translate to significant consequences in nanoparticle manufacturing. As such, the paper stresses that the most profitable innovations in nanoparticle manufacturing minimize heterogeneity during the early stages of the operation, reducing the need for subsequent processing. This decreases waste, simplifies characterization and improves the integration of nanoparticles into products—all of which save money.

The paper’s authors illustrate this point by comparing the production of gold nanoparticles and carbon nanotubes. For gold, the initial synthesis costs can be high, but the similarity of the nanoparticles produced requires less purification and characterization. Therefore, they can be made into a variety of products, such as sensors, at relatively low costs, they note.  In contrast, the more heterogeneous carbon nanotubes are less expensive to synthesize but require more processing to yield those with desired properties. The added costs during manufacturing currently make nanotubes practical only for high-value applications such as digital logic devices.

“Although these nanoparticles and their end products are very different, the stakeholders in their manufacture can learn much from each other’s best practices…by sharing knowledge, they might be able to improve both seemingly disparate operations,” says J. Alexander Liddle, NIST materials scientist and co-author. Finding ways like this to connect the dots is critically important for new ventures seeking to transfer nanoparticle technologies from laboratory to market, according to the authors.

WTEC nanotechnology consultant and co-author Michael Stopa notes that nanoparticle manufacturing can become so costly that funding runs out before a product can be brought to market. “In our paper, we outline several opportunities for improving the odds that new ventures will survive their journeys through this technology transfer ‘valley of death.’”

In the paper, the authors discuss how manufacturing challenges and innovations are affecting the ever-growing number of applications for nanoparticles, including those in the areas of electronics, energy, health care and materials.

Konica Minolta
Gardner Business Media, Inc.
Windmoeller
Blending Revolution
Plastics Recycling Latam
Shuttle Mold System
AM Workshop
Create custom Smartflow assemblies on-line, 24/7.
Realationships
Uway LLC
Vecoplan
Vacuum conveying powders to extruders compounding

Related Content

Medical

DuPont Buys Medical Product Manufacturer Spectrum Plastics

Purchase price of $1.75 billion for leading supplier of extruded, molded, and 3D printed medical components.  

Read More
Medical

SRC Medical Completes Expansion

The Massachusetts medical injection molder doubled its size with construction of a combined 45,000 ft2 of manufacturing and office space.

Read More
Medical

Medical-Grade Nylon 6, Nylon 6/66, and PET

DSM Engineering has expanded its Medical Care portfolio of engineering materials for medical devices.  

Read More
Medical

As Currier Grows in Medical Consumables, Blow Molding Is Its ‘Foot in the Door’

Currier Plastics has added substantial capacity recently in both injection and blow molding for medical/pharmaceutical products, including several machines to occupy a new, large clean room.

Read More

Read Next

industry 4.0

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Extrusion

Troubleshooting Screw and Barrel Wear in Extrusion

Extruder screws and barrels will wear over time. If you are seeing a  reduction in specific rate and higher discharge temperatures, wear is the likely culprit.   

Read More
Extrusion Know How

How Polymer Melts in Single-Screw Extruders

Understanding how polymer melts in a single-screw extruder could help you optimize your screw design to eliminate defect-causing solid polymer fragments.  

Read More
Windmoeller