Dover Clear
Published

Study Deems PHA as Biodegradable Alternative to Single-Use Plastics Like Straws

Applications for polyhydroxyalkanoate (PHA) can include additives, aqueous coatings, fibers, filaments, films, hot-melt adhesives and injection-molded articles.

Share

A pioneer of renewable and sustainable biopolymers for over a decade, with a focus on creating plastic products that are biodegradable and compostable, has gotten a ‘green light’ for its polyhydroxyalkanoate (PHA) material from University of Georgia (UGA) researchers and members of the UGA New Materials Institute.

PHA from Danimer Scientific has been recognized as an eco-friendly alternative to petrochemical plastics, according the study, which was recently published in Environmental Science & Technology. Researchers found that PHA effectively biodegrades in aerobic or anaerobic environments, such as a landfill, waste treatment facility or the ocean.

Danimer’s PHA technology can be found in a broad array of end-use plastic products. Applications for its PHA biopolymers include additives, aqueous coatings, fibers, filaments, films, hot-melt adhesives and injection-molded articles. The company now hold 125 patents in nearly 20 countries for a range of manufacturing processes and biopolymer formulations.

Said Danimer chief marketing officer Scott Tuten, “The results of this study indicate that PHA is a dependable and biodegradable plastic for food packaging and other consumer applications. Many single-use products, such as straws, are under scrutiny or even banned because of their environmental impact at the end of their lifecycle. Our team remains dedicated to helping companies find the quality, sustainable materials that fit their needs. This issue quite literally affects the entire world, so we were grateful for the opportunity to supply UGA with samples of PHA to explore what happens to the material in different environments.”

To determine how PHA biodegrades in a proper waste management scenario, researchers measured the gaseous carbon loss of PHA samples placed in anaerobic sludge after 40 – 60 days of incubation and compared the levels to those of cellulose powder in the same setting. The anaerobic degradation of PHA was not significantly different from that of the cellulose powder. In addition, the methane yields of PHA were found to be similar to food waste, which suggests the material could be effectively processed alongside common organic waste in a landfill.

Said Shunli Wang, Ph.D., postdoctoral research associate in the College of Engineering at UGA, “As governments and businesses consider alternatives to traditional plastics for everything from straws to food packaging, it is important to have a thorough understanding of the impact that different materials will have on various environments. Our study is among the first to comprehensively examine PHA, and results show that it has a relatively fast anaerobic biodegradation rate.”

Researchers also observed the gaseous carbon loss of PHA in seawater, simulating a situation when plastic waste is deposited in an ocean. The study confirmed that if a solid form of PHA were to end up in such an environment it would begin to biodegrade over the course of six months. Polypropylene pellets, a traditional plastic used as the negative control in the experiment, remained intact and unchanged during the same time period.

The final component of the study investigated the microbial diversity of both experiments to identify the bacteria present when PHA degrades. In anaerobic sludge conditions, Cloacamonales and Thermotogales were the dominant bacteria. In aerobic seawater conditions, Gemmatales and Phycisphaerales were the most enriched forms of bacteria. Researchers concluded that future studies would have to include expanded microbial analysis of PHA degradation, which will ultimately help guide the design of more efficient waste management systems.

Read the full paper summarizing the study on the Environmental Science & Technology website.

Plastics Recycling Latam
Go Beyond Blending
Orbetron new for 2024 micro twin screw feeder
Trust the experts for fast & efficient changeovers
Blending Revolution
Windmoeller
TracerVM Flow Meter features many display options
Dover Clear
Make Every Pellet Count
quick mold change solutions injection molders
New 2024 Twin Screw Report
Vacuum Tech for Plastics Manufacturers

Related Content

Biopolymers

Resins & Additives for Sustainability in Vehicles, Electronics, Packaging & Medical

Material suppliers have been stepping up with resins and additives for the ‘circular economy,’ ranging from mechanically or chemically recycled to biobased content.  

Read More
sustainability

CJ Bio’s Amorphous PHA Demonstrates Excellent Biodegradability in Marine environment

The tests of the bioplastic, a semi-crystalline PHA and a PLA were conducted by the national Korean testing agency (KCL)  

Read More
Biopolymers

Blend Amorphous PHA with PLA to Improve injection Molded Part Properties

Adding aPHA to PLA can boost a range of mechanical properties and expedite composting. Here are the details as well as processing guidelines for injection molding the blends.  

Read More
Biopolymers

Cling Wrap Made from Potato Waste

Australia’s Great Wrap to expand into U.S. with home compostable cling wrap and its refillable dispenser made from recycled PET bottles.

Read More

Read Next

sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
processing tips

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
Recycling

Advanced Recycling: Beyond Pyrolysis

Consumer-product brand owners increasingly see advanced chemical recycling as a necessary complement to mechanical recycling if they are to meet ambitious goals for a circular economy in the next decade. Dozens of technology providers are developing new technologies to overcome the limitations of existing pyrolysis methods and to commercialize various alternative approaches to chemical recycling of plastics.

Read More
Mold Cooling Visibility with TracerVM Flow Meters