Make Every Pellet Count
Published

Military Reports Additional Progress with Using Recycled 3D-Printed Material

A mobile recycling trailer will enable specially trained soldiers to fabricate 3D-printing filaments from plastic waste, improving readiness while reducing reliance on supply chains.

Share

Earlier this year, Plastics Technology reported that U.S. Military researchers are evaluating using recycled PET for 3D printing parts. They determined that PET filaments, produced by recycling, were just as strong and flexible as commercially available filaments for 3D printers. In tests, the team used recycled PET filaments to print a vehicle radio bracket, a long-lead-time military part. This process required about 10 water bottles and took about two hours to complete.

Now scientists reveal they have found a way to fabricate many of the parts within hours under combat conditions using not just water bottles, but cardboard and other recyclable materials found on base as starting materials for 3D printing. They say this ‘game-changing’ advance could improve operational readiness, reduce dependence on outside supply chains and enhance safety.

The researchers presented their work on Aug. 21 at the 256th National Meeting & Exposition of the American Chemical Society (ACS).

“Ideally, soldiers wouldn’t have to wait for the next supply truck to receive vital equipment,” says U.S. Army Research laboratory researcher Nicole Zander. “Instead, they could basically go into the cafeteria, gather discarded water bottles, milk jugs, cardboard boxes and other recyclable items, then use those materials as feedstocks for 3D printers to make tools, parts and other gadgets.”

Supplying combat troops with food, fuel, ammunition and repair parts is a monumental task, requiring thousands of support staff, contractors and manufacturers. In all, the U.S. Department of Defense has an inventory of 5 million items distributed through eight distinct supply chains, according to the U.S. Government Accountability Office. However, few of these items are stockpiled at front-line locations, meaning that troops in those areas can experience occasional shortages of important materials. Many of these units have 3D printers that can produce spare parts and other equipment, but they rely on conventional feedstocks, such as commercially available plastic filaments, that must be requisitioned, and they can take days, weeks or even months to arrive.

Initially, the researchers determined that other types of plastic, such as polypropylene (PP), used in yogurt or cottage cheese containers, or polystyrene (PS), used for plastic utensils, were not practical for use in 3D printing. Undeterred, the team sought to strengthen PP by mixing it with cardboard, wood fibers and other cellulose waste materials found on military bases to create new composite filaments. In addition, the very brittle PS was blended with ductile PP to generate a strong and flexible filament.

The researchers used a process called solid-state shear pulverization to generate composite PP/cellulose filaments. In this process, shredded plastic and paper, cardboard or wood flour was pulverized in a twin-screw extruder to generate a fine powder that was then melt-processed into 3D printing filaments. After testing using dynamic mechanical analysis, the scientists concluded that the new composites had improved mechanical properties, and they could be used to make strong 3D-printed materials.

Zander’s team is building a mobile recycling trailer that will enable specially trained soldiers to fabricate 3D-printing filaments from plastic waste. She is also exploring ways to print materials from plastic pellets instead of filaments, which could help soldiers quickly produce larger 3D-printed parts and machinery.

“We still have a lot to learn about how to best process these materials and what kinds of additives will improve their properties,” Zander says. “We’re just scratching the surface of what we can ultimately do with these discarded plastics.”
Shuttle Mold System
Maguire Ultra
Konica Minolta CM-36dG
Create custom Smartflow assemblies on-line, 24/7.
Insert molding automation
NPE2024: The Plastics Show
AM Workshop
Vacuum conveying powders to extruders compounding
Realationships
Cranes, Conveyors, Racks, Loaders, Accessories
Blending Revolution
Vecoplan

Related Content

Additives

Compatibilizers Aid Recycling & Upcycling of Mixed Resins

Compatibilizers are proving their worth in boosting critical properties such as impact/stiffness balance of PCR and PIR blends of polyolefins and other plastics.      

Read More
Packaging

Pregis Performance Flexibles: In the ‘Wow’ Business

Pregis went big and bold with investment in a brand-new, state-of-the-art plant and spent big on expanding an existing facility. High-tech lines, well-known leadership and a commitment to sustainability are bringing the “wow” factor to blown film.

Read More
Packaging

New Name, Products, Technology— But Same Service Philosophy

Schoeneck Containers is now Radius Packaging, but customer needs are still the focal center of this blow molder’s business. Those customers will benefit from the company’s push toward automation, sustainability, and new products in injection molding and stretch-blown PET.

Read More
sustainability

Recycling: What's Ahead in Advanced Sorting Technology

As the industry tries to ramp up recycling, there are several innovative sorting solutions in the offing—ranging from enhanced optical sorting technologies and chemical tracers to advanced solutions based digital watermarks and artificial intelligence.

Read More

Read Next

Recycling

Advanced Recycling: Beyond Pyrolysis

Consumer-product brand owners increasingly see advanced chemical recycling as a necessary complement to mechanical recycling if they are to meet ambitious goals for a circular economy in the next decade. Dozens of technology providers are developing new technologies to overcome the limitations of existing pyrolysis methods and to commercialize various alternative approaches to chemical recycling of plastics.

Read More
sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
Extrusion

Troubleshooting Screw and Barrel Wear in Extrusion

Extruder screws and barrels will wear over time. If you are seeing a  reduction in specific rate and higher discharge temperatures, wear is the likely culprit.   

Read More
New 2024 Twin Screw Report