Dover Clear
Published

How a Prototyping Company Became a Production Company with 3D Printing

After two decades of rapid prototyping with 3D printing, The Technology House is now leveraging this process for production.

Share

The Technology House (TTH) is a company that knows 3D printing. The Streetsboro, Ohio, business has been 3D printing with stereolithography since its launch more than 20 years ago as a product development firm. Over the years founder Chip Gear and his team have leveraged SLA to quickly and flexibly produce prototypes, master molds for urethane casting, tooling and more.

But until recently, TTH never saw 3D printing as a viable option for manufacturing end-use production parts. Its SLA printers produced parts with fine detail and good surface finish, but brittle material properties. The slow speed and limited materials available for SLA kept 3D printing firmly in the early stages of the product lifecycle at TTH, even as it added machining and injection molding capability to pursue production work. But with the addition of Digital Light Synthesis (DLS) printers and auxiliary equipment from Carbon, 3D printing of parts at production scales has become a full reality for the Ohio business.

The Technology House began working with Carbon as a beta tester in 2014, and is now part of the company’s Production Partner Network. TTH currently has three Carbon M1 and two M2 DLS 3D printers in-house, provided through Carbon’s subscription service rather than owned outright. It is also equipped with a Smart Part Washer from Carbon for automated cleaning, and a meter, mix, dispense (MMD) unit for dispensing resin. Together, the printers, washing unit and MMD form a “SpeedCell” system—a concept of interconnected equipment introduced by Carbon in 2017. (Find more on Carbon’s business model and technology in this article.)

Similar to stereolithography printers, Carbon’s DLS machines use UV light to cure liquid resin and build up a part. But compared to the stereolithography equipment still in use at TTH, Carbon’s system offers a number of advantages that make it viable for production applications:

  • Speed. A part that takes several hours with another process might take only 10 minutes to print with DLS. The Carbon printers are fast, but their speed can be deceiving; most resin parts require a thermal postcure after printing that can last as long as 13 hours. Still, the savings in time and cost are considerable; parts can be delivered within a week, no tooling required.
  • Part characteristics. The DLS printers rely on Continuous Liquid Interface Production (CLIP), a process that enables the build platform to rise continuously during the print rather than stopping after each layer. As a result, DLS parts lack the layer lines common to 3D-printed parts, reducing or eliminating the need for finishing. According to Carbon, they are also watertight and isotropic, having the same strength in all directions.
  • Materials. Production-capable materials were a key reason that The Technology House chose to partner with Carbon. The company’s materials catalog today includes more than 15 materials ranging from rigid polyurethanes to flexible elastomers and even some biocompatible materials. The range and durability of the urethane materials available give these printers a clear edge for production over TTH’s existing SLA equipment.
  • Automation. 3D printing still involves a fair amount of human involvement, but the SpeedCell offers a few features that help take the burden away from operators. One is integration with a meter, mix, dispense (MMD) unit that precisely weighs out the resin needed to fill each printer’s reservoir, reducing the time for this step from 25 minutes of human labor to just 5. Another labor-saving component is the Smart Part Washer, which helped TTH solve its bottleneck with manual cleaning. Completed build platforms can be loaded into this washer and cleaned of excess resin in less than 10 minutes.

The SpeedCell system has allowed The Technology House to reconsider 3D printing’s capabilities and use cases. While prototyping is still a common application on these machines, there is a trend toward customers pursuing production on this platform. “A customer might print between one and 10 parts at first, then order 50 to 100, and then thousands,” says Greg Cebular, vice president of sales and management. TTH is currently capable of turning out about 1,500 parts per day with its SpeedCell setup.

But the advantage for TTH and its customers is not just the ability to print end-use parts; it’s also the ability to offer an intermediate step between prototyping and injection molding. “3D printing allows us to pursue a ‘dual path’ toward production,” Cebular says. The technology is a way to manufacture parts quickly while waiting for tooling, or before investing in tooling while proving out a new product the market.

Read more about how The Technology House is using Carbon 3D printing here.
Everyday circularity
Guill - World Leader in Extrusion Tooling
Repair and Rectify
We ❤ Powders
TD-Series Desiccant Dryers
CM-17d
Conveying with Optimizer
Dri-Air
Flow Meters display cooling water flow and temp
Register Now!
Shibaura Machine Industrial IoT machiNetCloud
ONLINE AUCTION

Related Content

Automotive

Additive Fusion Technology Optimizes Composite Structures for Demanding Applications

9T Labs continues to enhance the efficiency of its technology, which produces composite parts with intentionally oriented fibers.

Read More

Medical Manufacturer Innovates with Additive Manufacturing and Extrusion Technology Hubs

Spectrum Plastics Group offers customers two technology hubs — one for extrusion, the other for additive manufacturing — to help bring ground-breaking products to market faster.

Read More

Additive Technologies for Injection Mold Tooling Ride Tailwinds

NPE2024: Lowering barriers to additive manufacturing adoption in toolmaking.

Read More

New Tool Steel Qualified for Additive Manufactured Molds and Dies

Next Chapter Manufacturing says HTC-45 — an optimized H-13 — will offer superior thermal transfer and longer tool life.

Read More

Read Next

NPE

Beyond Prototypes: 8 Ways the Plastics Industry Is Using 3D Printing

Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples to look for at NPE2024.

Read More
sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
TD-Series Desiccant Dryers